Selasa, 10 Juni 2025

Formulir

Formulir Daftar Peserta Didik











Daftar Peserta Didik

No Nama NIS Kelas

Sabtu, 26 Oktober 2019

Bagaimana caranya belajar giat tanpa merasa bosan ?

Belajar tidaklah selalu menjadi tugas yang paling menarik di kehidupanmu, namun belajar adalah hal yang sangat penting bagi setiap manusia, meskipun begitu. Semua orang pasti akan merasa bosan sesekali. Hal ini selalu menjadi sebuah masalah yang umum dialami setiap orang. Berikut adalah beberapa cara yang bisa kamu lakukan untuk menjaga dirimu tetap fokus belajar sendiri tanpa merasa bosan atau malas sekalipun.
  1. Carilah tempat yang menurutmu paling nyaman untuk belajar
    Satu aspek yang penting dalam belajar yang ideal adalah mencari lokasi yang tepat. Tempat itu haruslah bebas dari gangguan namun disaat yang bersamaan tidak membuat kamu cepat bosan atau mengantuk ketika belajar. Gangguan akan mengganggu tingkat produktivitas kamu dan akan membuat kamu menjadi bosan untuk belajar karena kamu teringat akan hal lain dan ingin segera menyelesaikannya
    Berikut adalah beberapa hal yang dapat membantu kamu menemukan tempat yang nyaman untuk belajar
    • Carilah tempat yang memiliki penerangan yang baik dengan suhu ruangan yang nyaman bagi anda. Suhu ruangan yang nyaman adalah temperatur dimana anda tidak merasa kepanasan atau kedinginan, cahaya yang cukup baik itu dari sinar matahari langsung atau menggunakan lampu dapat membuat mata tetap nyaman membaca buku dalam waktu yang lama.
    • Pastika ruangan kamu memiliki tempat yang cukup untuk meletakkan semua media pembelaran yang kamu butuhkan dengan benar. Juga selalu menjaga kebersihan ruang belajar kamu.
    • Cobalah belajar selain di rumah dan sekolah. Terkadang ada banyak sekali gangguan ketika kamu belajar baik di rumah maupun di sekolah. Cobalah untuk belajar di perpustakaan karena telah didesain agar kamu tidak mudah terganggu, dan juga terdapat banyak sumber bacaan yang akan memudahkan kamu dalam belajar.
  2. Jangan terlalu nyaman dengan lingkungan belajarmu
    Jika kamu terlalu nyaman dengan lingkungan belajarmu, kamu cenderung lebih sering mendapat banyak gangguan, bosan, atau ketiduran. Hindari belajar sambil berbaring terlebih jika kamu memang sedang ingin menyelesaikan sebuah pembelajaran dengan baik. Duduklah di kursi yang cukup untuk menyangga punggung kamu dengan baik. Namun juga jangan duduk di kursi yang sangat nyaman. Kamu pasti tidak ingin ketiduran saat belajar kan? Karena itu tidak baik untuk kamu.
  3. Rencanakan tujuan kamu belajar dengan baik.
    Salah satu alasan yang menjadi penyebab seseorang malas untuk belajar disebabkan karena kamu tidak memiliki pandangan kemana arah belajar kamu dan apa yang ingin kamu capai. Rencanakan segala hal yang ingin kamu lakukan sebelum kamu belajar. Keluarkan segala yang kamu tahu dan apa yang harus kamu capai serta berapa lama untuk menyelesaikannya. Dengan cara ini, kamu akan memiliki tujuan yang jelas. Kamu tahu apa saja yang harus dilakukan. Selain itu kamu juga bisa membagi waktu dengan baik setelah mengetahui apa tujuan dan kebutuhan kamu.
  4. Jangan hanya mempelajari satu pelajaran saja!
    Untuk membantu kamu dalam belajar secara kondusif, kamu dapat mengganti materi yang ingin kamu pelajajari setiap beberapa waktu. Misalnya belajar 1 jam untuk pelajaran komputasi, setelah itu belajar manajemen selama satu jam kemudian, dan seterusnya sampai anda merasa jenuh. Semakin sering kamu mengganti materi makan akan semakin panjang waktu yang terlewat tanpa kamu rasakan.
    Ada beberapa tips agar kamu dapat mengatur jadwal materi yang akan kamu pelajari dengan baik
    • Letakkan pelajaran favorit kamu pada urutan terakhir sehingga kamu memiliki motivasi unuk menyelesaikannya.
    • Letakkan pelajaran kedua yang kamu sukai pada urutan pertama agar kamu tidak merasa bosan di awal dan pelajaran yang kurang kamu sukai berada di tengah agar kamu merasa tertantang untuk mempelajarinya sebelum memasuki pelajaran favorit kamu
    • Kamu juga bisa memanjangkan durasi belajar beberapa materi daripada yang lain yang akan membantu kamu menyelesaikan sebuah tugas tanpa merasa bosan.
  5. Belajar pada waktu kamu paling aktif
    Belajar pada waktu kamu paling sadar dan aktif dapat meningkatkan produktivitas belajar kamu. Kamu akan lebih teliti dan lebih serius apa yang kamu pelajari. Jika kamu sudah mendapatkan waktu produktif kamu untuk belajar, maka biasakan agar kamu terbiasa belajar pada waktu tersebut dan belajar tidak menjadi beban.
Ada banyak cara belajar lainnya agar kamu dapat belajar dalam durasi yang lama, salah satu caranya adalah dengan berdiskusi. Belajar bersama orang lain tentu saja sangat membantu dalam meningkatkan tingkat keaktifan kita dalam belajar. Namun ada kalanya anda harus belajar sendiri sebelum berdiskusi atau sebelum mempresentasikan sebuah materi dengan orang lain agar kita tidak tertinggal dan suasana diskusi selalu menarik.

Rabu, 23 Oktober 2019

Gradien dan Persamaan Garis - Kelas 8 SMP

Soal No. 1
Diberikan 4 buah garis dalam koordinat cartesius seperti terlihat pada gambar berikut.
Tentukan gradien dari keempat garis pada gambar di bawah.


Pembahasan
Untuk menentukan gradien dari suatu garis



dimana
m = gradien atau kemiringan garis
I) Misal titik 1 adalah (x1, y1) = (3, 0) dan titik 2 (x2, y2) = (0, 6)
masuk formula m diatas sehingga



Bagaimana jika titik 1 dan 2 nya diambil secara berkebalikan? Coba kita lihat
Misal titik 1 adalah (x1, y1) = (0, 6) dan titik 2 (x2, y2) = (3, 0) masukkan rumus yang sama dengan angka yang telah kita balik tadi



Ternyata hasilnya adalah sama, jadi ambil saja sembarang tak perlu pusing dengan mana titik satu mana titik 2.

II) Titik-titik yang diketahui dari gambar adalah (0, 6) dan (−3, 0) sehingga gradien garisnya adalah



III) Titik-titik yang diketahui dari gambar adalah (−3, 0) dan (0, −6) sehingga gradien garisnya adalah



IV) Titik-titik yang diketahui dari gambar adalah (3, 0) dan (0, −6) sehingga gradien garisnya adalah



Soal No. 2
Tentukan persamaan garis yang memiliki gradien 3 dan melalui titik:
a) (3, 6)
b) (-4, 5)

Pembahasan
Menentukan persamaan suatu garis lurus jika telah diketahui gradiennya dengan cukup satu titik yang diketahui:



Masukkan angkanya didapatkan hasil
a) Melalui titik (3, 6)



b) Melalui titik (-4, 5)



Soal No. 3
Tentukan persamaan garis yang melalui titik (3, 4) dan titik (5, 12)!

Pembahasan
Menentukan persamaan suatu garis lurus jika diketahui dua buah titik yang dilaluinya:



masukkan, dengan titik (5, 12)



atau, dengan titik (3, 4), dimana hasilnya haruslah sama,



Soal No. 4
Tentukan gradien dari persamaan garis-garis berikut:
a) y = 3x + 2
b) 10x − 6y + 3 = 0

Pembahasan
a) y = 3x + 2
Pola persamaan garis pada soal a adalah
y = mx + C
Sehingga dengan mudah menemukan gradien garisnya m = 3

b) 18x − 6y + 24 = 0
Ubah persamaan b menjadi pola y = mx + c

18x − 6y + 24 = 0
18x + 24 = 6y
6y = 18x + 24
bagi dengan angka 6
y = 3x + 4
sehingga m = 3
Soal No. 5
Tentukan persamaan garis yang melalui titik (3, 1) dan tegak lurus dengan garis y = 2x + 5

Pembahasan
Dua buah garis saling tegak lurus jika memenuhi syarat sebagai berikut
m1 ⋅ m2 = −1

y = 2x + 5 memiliki gradien m1 = 2, sehingga garis yang akan dicari persamaannya harus memiliki gradien
m1 ⋅ m2 = −1
2 ⋅ m2 = −1
m2 = − 1/2

Tinggal disusun persamaan garisnya
y − y1 = m(x − x1)
y − 1 = 1/2(x − 3)
y − 1 = 1/2 x − 3/2
y = 1/2 x − 3/2 + 1
y = 1/2 x − 1/2

Soal No. 6
Tentukan persamaan garis yang melalui titik (3, 1) dan sejajar dengan garis y = 2x + 5

Pembahasan
Dua buah garis yang sejajar memiliki syarat gradiennya harus sama atau
m1 = m2

Gradien garis y = 2x + 5 adalah 2, sehingga gradien garis yang akan dicari juga 2 karena mereka sejajar. Sehingga
y − y1 = m(x − x1)
y − 1 = 2 (x − 3)
y − 1 = 2x − 6
y = 2x − 6 + 1
y = 2x − 5
Soal No. 7
Garis p memiliki persamaan :
y = 2x + 5

Tentukan persamaan garis yang didapatkan dengan:
a) menggeser garis p ke atas sebanyak 3 satuan
b) menggeser garis p ke bawah sebanyak 3 satuan

Pembahasan
Pergeseran suatu garis ke atas dan ke bawah.

y = 2x + 5

a) digeser ke atas sebanyak 3 satuan menjadi:
y = 2x + 5 + 3
y = 2x + 8

b) digeser ke bawah sebanyak 3 satuan

y = 2x + 5 − 3
y = 2x + 2

Soal No. 8
Garis m memiliki persamaan :
y = 2x + 10

Tentukan persamaan garis yang didapatkan dengan:
a) menggeser garis m ke kanan sebanyak 3 satuan
b) menggeser garis m ke kiri sebanyak 3 satuan

Pembahasan
Pergeseran suatu garis ke kanan dan ke kiri.

y = 2x + 10

a) digeser ke kanan sebanyak 3 satuan
y = 2(x − 3) + 10
y = 2x − 6 + 10
y = 2x + 4

b) digeser ke kiri sebanyak 3 satuan

y = 2(x + 3) + 10
y = 2x + 6 + 10
y = 2x + 16

Soal No. 9
Garis y = 1/2 x − 5 sejajar dengan garis yang melalui titik P (10, a + 4) dan titik Q (a, 8). Tentukan koordinat dari titik P dan titik Q!

Pembahasan
Gradien garis y = 1/2 x − 5 adalah 1/2. Dua garis yang sejajar memiliki gradien yang sama. Sehingga gradien garis PQ juga 1/2.



Koordinat titik P = (10, a + 4) = (10, 6 + 4) = (10, 10)

Koordinat titik Q = (a, 8) = (6, 8)
Soal No. 10
Tentukan persamaan garis berikut dengan cepat!



Pembahasan
Menentukan persamaan garis dengan diketahui titik potongnya pada sumbu x dan sumbu y:
   bx + ay = ab
a itu angka disumbu x,  yang memotong tentunya,
b itu angka di sumbu y
ab maksudnya a dikali b.
dari gambar:
a = 3
b = 2

Jadi persamaan garisnya:
2x + 3y = 6
Soal No. 11
Gradien garis x − 3y = − 6 adalah....
A. −3
B. − 1/3
C. 1/3
D. 3
(Gradien dan Persamaan Garis - un matematika smp 2012)

Pembahasan
Cara pertama
Arahkan ke bentuk umum persamaan garis, dengan m adalah gradien
y = mx + c

x − 3y = − 6
x + 6 = 3y
3y = x + 6
y = x/3 + 6/3
y = 1/3 x + 2

Jadi m = 1/3

Cara kedua
Satukan x dan y dalam satu ruas, boleh di kiri semua atau di kanan semua, pada soal di atas x dan y sudah dalam satu ruas. Kemudian


Soal:
x − 3y = − 6

koefisien x = 1
koefisien y = −3

Jadi
m = − koefisien x / koefisien y
= − 1 / −3
= 1/3

Catatan:
Perhatikan perbedaan rumusnya dengan soal nomor 1.

Soal No.12
Gradien garis dengan persamaan 3x + 8y = 9 adalah...
A. 8/3
B. 3/8
C. −3/8
D. −8/3
(UN SMP 2013)

Pembahasan
Seperti nomor 11 dengan cara kedua:
m = − 3/8

Dimensi Tiga Jarak Titik ke Bidang Kubus

Soal No. 1
Pada kubus ABCD.EFGH, panjang rusuk 8 cm.
Jarak titik E ke bidang BDG adalah...
A. 1/3 √3 cm
B. 2/3 √3 cm
C. 4/3 √3 cm
D. 8/3 √3 cm
E. 16/3 √3 cm
(UN Matematika 2012)

Pembahasan
Perhatikan gambar berikut.
Posisi titik E dan bidang BDG



Garis merah adalah jarak yang akan dicari, dimana garis tersebut harus tegak lurus dengan bidang BDG. Tambahkan garis-garis bantu untuk mempermudah



Perhatikan segitiga EQG yang akan digunakan sebagai acuan perhitungan.



Panjang-panjang yang diperlukan adalah
PQ = 8 cm, sama panjang dengan rusuk kubus.
EG = 8√2 cm, diagonal bidang kubus.
Mencari panjang GQ dengan phytagoras, dengan QC adalah setengah dari diagonal sisi = 4√2



Kemudian pada segitiga EPQ berlaku



ER tidak lain adalah jarak titik E ke bidang BGD.
Soal No. 2
Kubus ABCD.EFGH dengan panjang rusuk 10 cm. Titik I terletak di tengah-tengah rusuk BC. Tentukan jarak titik I ke bidang AFGD

Pembahasan
Sketsanya seperti berikut



Dari segitiga KLI diperoleh jarak titik I ke bidang AFGH, yaitu panjang dari I ke J dengan data-data yang diperlukan:
LI = 10 cm, sama dengan panjang rusuk kubus.
KI = 10 cm, sama panjangnya dengan rusuk kubus
KL = 10√2 cm, sama panjangnya dengan diagonal sisi kubus, ingat a√2



Sehingga



Soal No. 3
Kubus ABCD.EFGH dengan panjang rusuk 6 cm. Titik P adalah titik tengah EH, Q adalah titik tengan BF, R adalah titik tengah CG dan S adalah titikpotong garis ACdan BD. Tentukan jarak titik S ke bidang PQR

Pembahasan
Posisi titik P, Q, R dan S pada kubus sebagai berikut:



Acuan hitung adalah segitiga PST, tambahkan titik-titik lain jika perlu.



Tentukan panjang ST, PS dan PT dengan phytagoras, akan ditemukan bahwa ST = 3√2 cm dan PT = √45 cm



Misalkan UT = x, maka PU adalah √45 − x, dan US namakan sebagai t



Dari segitiga STU



Dari segitiga PSU



Eliminasi dan substitusikan hingga di dapat panjang t

Nilai t adalah

Limit Fungsi Aljabar

Soal No. 1
Tentukan hasil dari:


Pembahasan
Limit bentuk



diperoleh



Soal No. 2



Pembahasan
Limit aljabar bentuk



Substitusikan saja nilai x,

Berikutnya dilanjutkan dengan tipe metode turunan yaitu limit x menuju angka tertentu dimana jika disubstitusikan langsung mendapatkan hasil yang tak tentu.
Soal No. 3
Tentukan nilai dari   

Pembahasan
Jika angka 2 kita substitusikan ke x, maka akan diperoleh hasil 0/0 (termasuk bentuk tak tentu), sehingga selesaikan dengan metode turunan saja.


Soal No. 4
Tentukan nilai dari

Pembahasan
Masih menggunakan turunan


Soal No. 5
Nilai

A. −1/4
B. −1/2
C. 1
D. 2
E. 4
(Soal Limit Fungsi Aljabar UN 2012)

Pembahasan
Bentuk 0/0 juga, ubah bentuk akarnya ke bentuk pangkat agar lebih mudah diturunkan seperti ini


Turunkan atas - bawah, kemudian masukkan angka 3 nya

Soal No. 6
Nilai dari



A. 16
B. 8
C. 4
D. -4
E. -8
(Matematika IPS 013)

Pembahasan
Bentuk 0/0 juga, dengan turunan:

atau dengan cara pemfaktoran:
Soal No. 7
Nilai



A. − 2/9
B. −1/8
C. −2/3
D. 1
E. 2
un matematika 2007

Pembahasan
Dengan substitusi langsung akan diperoleh bentuk 0/0.
Cara Pertama
Perkalian dengan sekawan dan pemfaktoran:



Cara Kedua
dengan turunan:

Catatan
Cara menurunkan


Ubah dulu bentuk akar jadi bentuk pangkat, kl akar pangkat dua itu sama saja dengan pangkat setengah, jadinya
Turunan dari 3 adalah nol, ga usah ditulis, lanjut turunan dari
dicari pakai turunan berantai namanya, prakteknya begini:
Pangkatnya taruh depan, terus pangkatnya dikurangi satu, terus  dikali dengan turunan dari fungsi yang ada dalam kurung. x2 – 7 kalo diturunkan jadinya 2x –  0 atau 2x saja. Jadinya:

Contoh berikutnya limit x menuju tak berhingga dalam bentuk f(x)/g(x). Kesimpulan berikut digunakan pada tiga nomor berikutnya:



Soal No. 8
Tentukan nilai dari

Pembahasan
Limit x menuju ∞ dengan pangkat tertinggi yang sama, m = n



Soal No. 9
Tentukan nilai dari

Pembahasan
Limit x menuju ∞ dengan pangkat tertinggi dari pembilang lebih tinggi dari penyebutnya, m > n



Soal No. 10
Tentukan nilai dari

Pembahasan
Limit x menuju ∞ dengan pangkat tertinggi dari pembilang lebih rendah dari penyebutnya, m < n



Contoh berikutnya tipe soal limit → ∞ yang berbentuk "Selisih Akar Kuadrat".



Ini rumus yang nanti digunakan:



Kita terapkan pada soal berikut

Soal No. 11
Nilai dariadalah...

A. 3/4
B. 4/5
C. 6/5
D. 5/4
E. 4/3
(Ebtanas 1992)

Pembahasan
Limit bentuk selisih akar kuadrat dimana
a = p
dengan b = 3 dan q = −5 sehingga tengok rumus di atas



Soal No. 12
Nilai dariadalah...
A. − 39/10
B. − 9/10
C. −21/10
D. 39/10
E. ∞

Pembahasan
Langkah pertama ubah ke bentuk selisih akar seperti soal sebelumnya.



Soal No. 13
Nilai dariadalah...
A. ∞
B. 8
C. 5/4
D. 1/2
E. 0

Pembahasan
Ubah ke bentuk selisih akar seperti  ini:



Soal No. 14
Nilai dariadalah...

Pembahasan
Ubah ke bentuk selisih akar seperti soal sebelumnya.



Soal No. 15
Nilai dari

Pembahasan
Soal limit aljabar dengan bentuk selisih akar gunakan ketentuan berikut:



Limit selisih akar dengan a = c, sehingga hasilnya = 0

Soal No. 16
Nilai dari

Pembahasan
Limit selisih akar dengan a > c, sehingga hasilnya = ∞
Model berikutnya:
Soal No. 17
Nilai dari l



A. 0
B. 1/3 √3
C. √3
D. 2√3
E. ∞
un ipa sma  2013

Pembahasan
Modifikasikan hingga jika disubstitusikan tidak menjadi bentuk tak tentu, 2x jika diubah bentuk akar akan menjadi √4x2:



Substitusi x dengan ∞ ingat bilangan dibagi tak hingga hasilnya (mendekati) NOL.

Catatan Yang Ditampilkan

Formulir

Formulir Daftar Peserta Didik Nama Lengkap: NIS: Kelas: Tambah Peserta Daftar Peserta Didik N...