Trigonometri

Soal No. 1
Nyatakan sudut-sudut berikut dalam satuan derajad:
a) 1/2 π rad
b) 3/4 π rad
c) 5/6 π rad

Pembahasan
Konversi:
1 π radian = 180°

Jadi:
a) 1/2 π rad


b) 3/4 π rad


c) 5/6 π rad


Soal No. 2
Nyatakan sudut-sudut berikut dalam satuan radian (rad):
a) 270°
b) 330°

Pembahasan
Konversi:
1 π radian = 180°

Jadi:
a) 270°


b) 330°


Soal No. 3
Diberikan sebuah segitiga siku-siku seperti gambar berikut ini.

Tentukan:
a) panjang AC
b) sin θ
c) cos θ
d) tan θ
e) cosec θ
f) sec θ
d) cotan θ
Pembahasan
a) panjang AC
Dengan phytagoras diperoleh panjang AC



b) sin θ



c) cos θ



d) tan θ



e) cosec θ



f) sec θ



g) cotan θ



Soal No. 4
Sebuah segitiga siku-siku.



Diketahui nilai dari sin β = 2/3. Tentukan nilai dari :
a) cos β
b) tan β

Pembahasan
sin β = 2/3 artinya perbandingan panjang sisi depan dengan sisi miringnya adalah 2 : 3





Gunakan phytagoras untuk menghitung panjang sisi yang ketiga (sisi samping):



Sehingga nilai cos β dan tan β berturut-turut adalah



Soal No. 5
Seorang anak berdiri 20 meter dari sebuah menara seperti gambar berikut.



Perkirakan ketinggian menara dihitung dari titik A! Gunakan √2 = 1,4 dan √3 = 1,7 jika diperlukan.

Pembahasan
tan 60 ° adalah √3, asumsinya sudah dihafal. Sehingga dari pengertian tan sudut



Tinggi menara sekitar 34 meter.

Soal No. 6
Sebuah marka kejut dipasang melintang pada sebuah jalan dengan sudut 30° seperti ditunjukkan gambar berikut.



Jika panjang marka kejut adalah 8 meter, tentukan lebar jalan tersebut!

Pembahasan
Segitiga dengan sudut istimewa 30° dan sisi miring 8 m.



sin 30° = 1/2
sin 30° = BC/AC
BC/AC = 1/2
BC = 1/2 × AC = 1/2 × 8 = 4 meter

Lebar jalan = BC = 4 meter

Soal No. 7
Diberikan sebuah segitiga sama sisi ABC seperti gambar berikut. Panjang TC adalah 12 cm.



Tentukan panjang sisi segitiga tersebut!

Pembahasan
Δ ABC sama sisi, sehingga sudut A = sudut B = sudut C = 60° Jika diambil titik ATC menjadi segitiga, maka didapat gambar berikut.



Sinus 60° pada segitiga ATC adalah perbandingan sisi TC (sisi depan) dengan sisi AC (sisi miring) sehingga



Soal No. 8
Diketahui segitiga ABC dengan panjang AC = AB = 6 cm. Sudut C sebesar 120°.



Tentukan luas segitiga ABC!

Pembahasan
Segitiga ABC adalah sama kaki. Jika diambil garis tinggi TC maka didapat gambar berikut.



Menentukan panjang AT dan CT dengan sudut yang diketahui yaitu 60°



Sehingga luas segitiga adalah



Soal No. 9
cos 315° adalah....
A. − 1/2 √3
B. − 1/2 √2
C. − 1/2
D. 1/2 √2
E. 1/2 √3
(Soal Ebtanas 1988)

Pembahasan
Sudut 315° berada di kuadran IV. Nilai-nilai cosinus sudut di kuadran IV memenuhi rumus berikut:
cos (360° − θ) = cos θ

Sehingga
cos 315° = (360° − 45°) = cos 45° = 1/2 √2 
Perhatikan contoh-contoh penggunaan aturan sinus berikut ini:

Soal No. 1
Tentukan panjang BC pada segitiga berikut!


Pembahasan
AC = 12 cm
∠A = 60°
∠B = 45°

Panjang BC =....
Perhatikan gambar, pada segitiga berlaku aturan sinus sebagai berikut

Sehingga



Soal No. 2
Tentukan besar sudut C pada segitiga berikut!



Pembahasan
Data
AC = 5/3 √6 cm
BC = 5 cm

Dari data yang ada bisa ditentukan besar sudut B terlebih dahulu



Jumlah sudut segitiga adalah 180°sehingga besar sudut C adalah
∠C = 180 − (60 + 45) = 75°
Soal No. 3
Perhatikan gambar segitiga di bawah ini!



Tentukan perbandingan panjang sisi AB dan BC!

Pembahasan
Pada segitiga berlaku:



Sehingga perbandingan AB : BC = √2 : √3

Soal No. 4
Segitiga PQR dengan sisi-sisinya adalah p, q dan r. Jika p = 16 cm, r = 8√2 cm dan ∠ R = 30° tentukan besar ∠ P !

Pembahasan
Segitiga PQR



Berlaku aturan sinus



Besar sudut P dengan demikian adalah 45°
Soal No. 5
Perhatikan gambar berikut!



Tentukan nilai kosinus sudut C!

Pembahasan
Dengan aturan sinus terlebih dahulu:



Untuk nilai kosinusnya gambar segitiga siku-siku bantu:



diperoleh nilai kosinusnya

 
Perhatikan gambar.
Pada suatu segitiga berlaku aturan kosinus sebagai berikut


Berikut beberapa  contoh soal penggunaan aturan kosinus:
Soal No. 1
Segitiga samakaki ABC dengan sudut C = 30°.


Jika panjang BC = 12 cm, tentukan panjang AB!

Pembahasan
Dengan aturan kosinus


diperoleh

Soal No. 2
Pada suatu lingkaran  dibuat sebuah segi delapan beraturan seperti gambar di bawah.
Jari-jari lingkaran adalah 12 cm.



Tentukan:
a) panjang sisi segi-8
b) kelililing segi delapan tersebut!
Pembahasan
Segi delapan tersusun dari 8 buah segitiga sama kaki, dengan kedua kakinya panjangnya 12 cm, sama dengan jari-jari lingkaran.



Ambil satu segitiga,


a) panjang sisi segi-8
Terapkan aturan kosinus sebagai berikut:



b) Keliling segi delapan adalah 8 kali dari panjang sisinya

Soal No. 3
Dalam suatu lingkaran berjari-jari 8 cm, dibuat segi-8 beraturan. Tentukan panjang sisi segi-8 tersebut!

Pembahasan
n = 8
r = 8 cm

Disini akan digunakan rumus jadi menentukan panjang sisi dari suatu segi-n dalam lingkaran yang berjari-jari r


atau bentuk lain



dengan format kedua diperoleh

Soal No. 4
Diketahui:
PQ = 6 cm, QR = 9 cm dan ∠PQR = 120°



Tentukan kelililing segitiga PQR

Pembahasan
Mencari panjang PR



Keliling segitiga
= 6 cm + 9 cm + 3√19
= (15 + 3√19) cm
Soal No. 5
Diberikan segitiga ABC seperti gambar berikut ini



AB = 20 cm, BC = 10√3 cm dan AC = 10 cm. Tentukan besar ∠A

Pembahasan
Data segitiga:
a = 10√3 cm
b = 10 cm
c = 20 cm
∠A =....

Dengan aturan kosinus pada ΔABC diperoleh nilai sudut A:



Sudut yang memiliki nilai cos sama dengan 1/2 adalah 60°

Soal No. 6
Sebuah segitiga ABC memiliki sisi-sisi a, b dan c. Pada segitiga tersebut berlaku (a − b)(a + b) = c (c − b √3 ) . Tentukan besar sudut A

Pembahasan
Diketahui:
(a −b)(a + b) = c (c − b √3 )

Uraikan
a2 − b2 = c2 − bc√3
a2 = b2 + c2 − bc√3

Dari aturan kosinus
a2 = b2 + c2 − 2bc cos A

Terlihat bahwa 2bc cos A = bc√3 sehingga
2bc cos A = bc√3
cos A = 1/2 √3
A = 30°

Sudut dengan nilai cos sebesar 1/2 √3 adalah 30°.
Soal No. 7
Perhatikan gambar berikut!



Panjang QR adalah √14 cm, PR = 6 cm dan PQ = 4 cm. Tentukan nilai sinus sudut P!

Pembahasan
Dengan menggunakan aturan cosinus terlebih dahulu:



Untuk nilai sinusnya gunakan perbandingan dasar trigonometri:

sehingga


Soal No. 8
Dari sebuah segitiga ABC diketahui panjang AB = 6 cm, BC = 5 cm dan AC = 4 cm. Nilai tangen sudut B adalah....
A. 4/6
B. 3/4
C. 7/16
D. 1/3 √7
E. 1/4 √7

Pembahasan
Segitiga ABC


Dari aturan kosinus


Gambar segitiga siku-siku khusus untuk sudut B, kosinus 3/4 artinya sisi samping 3 dan sisi miring 4.


Cari sisi depannya dengan pythagoras akan diperoleh sisi depannya √7:


Jadi tangen B adalah 1/3√7
Luas Segitiga
Soal No. 1
Segitiga samasisi ABC dengan panjang sisi 12 cm diperlihatkan gambar berikut!



Tentukan luas segitiga dengan menggunakan rumus pertama di bawah!

Pembahasan
Ambil garis tinggi dari segitiga



Phytagoras saat mencari tinggi segitiga

Berikutnya menentukan luas segitiga.  4 kelompok rumus berikut untuk menentukan luas suatu segitiga.




Luas segitiga dengan rumus pertama:



Soal No. 2
Segitiga samasisi ABC dengan panjang sisi 12 cm diperlihatkan gambar berikut!



Tentukan luas segitiga dengan menggunakan rumus nomor 3 di atas!

Pembahasan
Cari setengah dari keliling segitiga terlebih dahulu



Masuk rumus nomor tiga



Soal No. 3
Segitiga samasisi ABC dengan ukuran diperlihatkan gambar berikut!



Tentukan luas segitiga!

Pembahasan
Satu sudut diketahui beserta dua sisi pengapitnya, gunakan rumus dari kelompok 2.



Soal No. 4
Jajargenjang PQRS diperlihatkan pada gambar berikut!



Panjang PQ adalah 10 cm dan QR adalah 8 cm. Sudut PQR = 60°. Tentukan luas jajargenjang PQRS!

Pembahasan
Jajar genjang tersusun dari dua buah segitiga, yaitu segitiga PQR dan segitiga PSR yang luasnya sama.



Sehingga luas jajargenjang sama dengan dua kali luas salah satu segitiga.



Soal No. 5
Segitiga PQR diperlihatkan gambar berikut.



Jika luas segitiga PQR adalah 24 cm2 tentukan nilai sin x

Pembahasan
Dari rumus luas segitiga ditemukan nilai sin x

Soal No. 6
Pada sebuah lingkaran dibuat segi-12 beraturan. Jika jari-jari lingkaran adalah 10 cm, tentukan luas segi-12 yang terbentuk!

Pembahasan
Kali ini akan digunakan rumus langsung untuk menentukan luas segi-n beraturan yang dibuat di dalam suatu lingkaran yang berjari-jari r, dasarnya dari luas segitiga menggunakan sinus, dikalikan banyaknya segitiga yang terbentuk.



Segi 12
n = 12
r = 10
A =.......

dengan rumus di atas diperoleh:

 

Komentar

Postingan populer dari blog ini

101 Kreasi Unik Dari Kardus Bekas

Turunan Fungsi

soal deret