Contoh soal dan pembahasan tentang limit fungsi
Soal No. 1
Tentukan hasil dari:
Pembahasan
Jika angka 2 kita substitusikan ke x, maka akan diperoleh hasil 0/0 (termasuk bentuk tak tentu), sehingga selesaikan dengan metode turunan saja.
Soal No. 4
Pembahasan
Masih menggunakan turunan
Soal No. 5
A. −1/4
B. −1/2
C. 1
D. 2
E. 4
(Soal Limit Fungsi Aljabar UN 2012)
Pembahasan
Bentuk 0/0 juga, ubah bentuk akarnya ke bentuk pangkat agar lebih mudah diturunkan seperti ini
Turunkan atas - bawah, kemudian masukkan angka 3 nya
Pembahasan
Limit x menuju ∞ dengan pangkat tertinggi yang sama, m = n
Soal No. 9
Pembahasan
Limit x menuju ∞ dengan pangkat tertinggi dari pembilang lebih tinggi dari penyebutnya, m > n
Soal No. 10
Pembahasan
Limit x menuju ∞ dengan pangkat tertinggi dari pembilang lebih rendah dari penyebutnya, m < n
Contoh berikutnya tipe soal limit → ∞ yang berbentuk "Selisih Akar Kuadrat".
Ini rumus yang nanti digunakan:
Kita terapkan pada soal berikut
Soal No. 11
A. 3/4
B. 4/5
C. 6/5
D. 5/4
E. 4/3
(Ebtanas 1992)
Pembahasan
Limit bentuk selisih akar kuadrat dimana
a = p
dengan b = 3 dan q = −5 sehingga tengok rumus di atas
Soal No. 12
Pembahasan
Ubah ke bentuk selisih akar seperti soal sebelumnya.
Soal No. 15
Pembahasan
Soal limit aljabar dengan bentuk selisih akar gunakan ketentuan berikut:
Limit selisih akar dengan a = c, sehingga hasilnya = 0
Soal No. 16
Pembahasan
Limit selisih akar dengan a > c, sehingga hasilnya = ∞
Pembahasan
Cara pertama dengan rumus yang ada diatas, sehingga langsung didapatkan
atau dengan cara kedua yang lebih panjang, memakai turunan, 3x turunkan jadi 3 dan sin 4x turunkan jadi 4 cos 4x, kemudian ganti x dengan nol
Soal No. 2
Pembahasan
Seperti nomor 1
Soal No. 3
Pembahasan
Seperti nomor 1 juga
Soal No. 4
Tentukan nilai dari:
Pembahasan
Perhatikan rumus limit berikut:
Diperoleh
Soal No. 5
Pembahasan
Identitas trigonometri berikut diperlukan
Setelah diubah bentuknya gunakan rumus dasar di atas
Pembahasan
Ubah dulu 1 − cos 4x menjadi 2 sin 2 2x.
Soal No. 7
Pembahasan
Ubah dulu 1 − cos 6x menjadi 2 sin 2 3x.
Soal No. 8
Tentukan hasil dari:
Pembahasan
Limit bentuk
diperoleh
Limit bentuk
diperoleh
Soal No. 2
Pembahasan
Limit aljabar bentuk
Substitusikan saja nilai x,
Pembahasan
Limit aljabar bentuk
Substitusikan saja nilai x,
Berikutnya dilanjutkan dengan tipe metode turunan yaitu limit x menuju angka tertentu dimana jika disubstitusikan langsung mendapatkan hasil yang tak tentu.
Soal No. 3
Tentukan nilai dari |
Pembahasan
Jika angka 2 kita substitusikan ke x, maka akan diperoleh hasil 0/0 (termasuk bentuk tak tentu), sehingga selesaikan dengan metode turunan saja.
Soal No. 4
Tentukan nilai dari |
Pembahasan
Masih menggunakan turunan
Soal No. 5
Nilai |
A. −1/4
B. −1/2
C. 1
D. 2
E. 4
(Soal Limit Fungsi Aljabar UN 2012)
Pembahasan
Bentuk 0/0 juga, ubah bentuk akarnya ke bentuk pangkat agar lebih mudah diturunkan seperti ini
Turunkan atas - bawah, kemudian masukkan angka 3 nya
Soal No. 6
Nilai dari
A. 16
B. 8
C. 4
D. -4
E. -8
(Matematika IPS 013)
Pembahasan
Bentuk 0/0 juga, dengan turunan:
Nilai dari
A. 16
B. 8
C. 4
D. -4
E. -8
(Matematika IPS 013)
Pembahasan
Bentuk 0/0 juga, dengan turunan:
atau dengan cara pemfaktoran:
Soal No. 7
Nilai
A. − 2/9
B. −1/8
C. −2/3
D. 1
E. 2
un matematika 2007
Pembahasan
Dengan substitusi langsung akan diperoleh bentuk 0/0.
Cara Pertama
Nilai
A. − 2/9
B. −1/8
C. −2/3
D. 1
E. 2
un matematika 2007
Pembahasan
Dengan substitusi langsung akan diperoleh bentuk 0/0.
Cara Pertama
Perkalian dengan sekawan dan pemfaktoran:
Cara Kedua
Cara Kedua
dengan turunan:
Catatan
Cara menurunkan
Ubah dulu bentuk akar jadi bentuk pangkat, kl akar pangkat dua itu sama saja dengan pangkat setengah, jadinya
Cara menurunkan
Ubah dulu bentuk akar jadi bentuk pangkat, kl akar pangkat dua itu sama saja dengan pangkat setengah, jadinya
Turunan dari 3 adalah nol, ga usah ditulis, lanjut turunan dari
dicari pakai turunan berantai namanya, prakteknya begini:
Pangkatnya taruh depan, terus pangkatnya dikurangi satu, terus dikali dengan turunan dari fungsi yang ada dalam kurung. x2 – 7 kalo diturunkan jadinya 2x – 0 atau 2x saja. Jadinya:
Pangkatnya taruh depan, terus pangkatnya dikurangi satu, terus dikali dengan turunan dari fungsi yang ada dalam kurung. x2 – 7 kalo diturunkan jadinya 2x – 0 atau 2x saja. Jadinya:
Contoh berikutnya limit x menuju tak berhingga dalam bentuk f(x)/g(x). Kesimpulan berikut digunakan pada tiga nomor berikutnya:
Soal No. 8
Soal No. 8
Tentukan nilai dari |
Pembahasan
Limit x menuju ∞ dengan pangkat tertinggi yang sama, m = n
Soal No. 9
Tentukan nilai dari |
Pembahasan
Limit x menuju ∞ dengan pangkat tertinggi dari pembilang lebih tinggi dari penyebutnya, m > n
Soal No. 10
Tentukan nilai dari |
Pembahasan
Limit x menuju ∞ dengan pangkat tertinggi dari pembilang lebih rendah dari penyebutnya, m < n
Contoh berikutnya tipe soal limit → ∞ yang berbentuk "Selisih Akar Kuadrat".
Ini rumus yang nanti digunakan:
Kita terapkan pada soal berikut
Soal No. 11
Nilai dari | adalah... |
A. 3/4
B. 4/5
C. 6/5
D. 5/4
E. 4/3
(Ebtanas 1992)
Pembahasan
Limit bentuk selisih akar kuadrat dimana
a = p
dengan b = 3 dan q = −5 sehingga tengok rumus di atas
Soal No. 12
Nilai dari | adalah... |
A. − 39/10
B. − 9/10
C. −21/10
D. 39/10
E. ∞
Pembahasan
Langkah pertama ubah ke bentuk selisih akar seperti soal sebelumnya.
Soal No. 13
B. − 9/10
C. −21/10
D. 39/10
E. ∞
Pembahasan
Langkah pertama ubah ke bentuk selisih akar seperti soal sebelumnya.
Soal No. 13
Nilai dari | adalah... |
A. ∞
B. 8
C. 5/4
D. 1/2
E. 0
Pembahasan
Ubah ke bentuk selisih akar seperti ini:
Soal No. 14
B. 8
C. 5/4
D. 1/2
E. 0
Pembahasan
Ubah ke bentuk selisih akar seperti ini:
Soal No. 14
Nilai dari | adalah... |
Pembahasan
Ubah ke bentuk selisih akar seperti soal sebelumnya.
Soal No. 15
Nilai dari |
Pembahasan
Soal limit aljabar dengan bentuk selisih akar gunakan ketentuan berikut:
Limit selisih akar dengan a = c, sehingga hasilnya = 0
Soal No. 16
Nilai dari |
Pembahasan
Limit selisih akar dengan a > c, sehingga hasilnya = ∞
Model berikutnya:
Soal No. 17
Nilai dari l
A. 0
B. 1/3 √3
C. √3
D. 2√3
E. ∞
un ipa sma 2013
Pembahasan
Modifikasikan hingga jika disubstitusikan tidak menjadi bentuk tak tentu, 2x jika diubah bentuk akar akan menjadi √4x2:
Substitusi x dengan ∞ ingat bilangan dibagi tak hingga hasilnya (mendekati) NOL.
Nilai dari l
A. 0
B. 1/3 √3
C. √3
D. 2√3
E. ∞
un ipa sma 2013
Pembahasan
Modifikasikan hingga jika disubstitusikan tidak menjadi bentuk tak tentu, 2x jika diubah bentuk akar akan menjadi √4x2:
Substitusi x dengan ∞ ingat bilangan dibagi tak hingga hasilnya (mendekati) NOL.
Soal No. 1
Tentukan hasil dari soal limit berikut |
Pembahasan
Cara pertama dengan rumus yang ada diatas, sehingga langsung didapatkan
atau dengan cara kedua yang lebih panjang, memakai turunan, 3x turunkan jadi 3 dan sin 4x turunkan jadi 4 cos 4x, kemudian ganti x dengan nol
Soal No. 2
Tentukan hasil dari soal limit berikut |
Pembahasan
Seperti nomor 1
Soal No. 3
Tentukan hasil dari soal limit berikut |
Pembahasan
Seperti nomor 1 juga
Soal No. 4
Tentukan nilai dari:
Pembahasan
Perhatikan rumus limit berikut:
Diperoleh
Soal No. 5
Tentukan hasil dari soal limit berikut |
Pembahasan
Identitas trigonometri berikut diperlukan
Setelah diubah bentuknya gunakan rumus dasar di atas
Soal No. 6
Tentukan hasil dari soal limit berikut |
Pembahasan
Ubah dulu 1 − cos 4x menjadi 2 sin 2 2x.
Soal No. 7
Tentukan hasil dari soal limit berikut |
Pembahasan
Ubah dulu 1 − cos 6x menjadi 2 sin 2 3x.
Soal No. 8
Tentukan hasil dari soal limit berikut |
A. 1/2
B. 1/3
C. 1/6
D. 1/12
E. 1/18
(umptn 2001)
Pembahasan
Tinggal di susun ulang, didapat hasil
Soal No. 9
B. 1/3
C. 1/6
D. 1/12
E. 1/18
(umptn 2001)
Pembahasan
Tinggal di susun ulang, didapat hasil
Soal No. 9
Nilai |
A. 4
B. 2
C. −1
D. −2
E. −4
(un 2012 A13 dan D49)
Pembahasan
Jika 1 − cos 4x menjadi 2 sin 2 2x, tentunya cos 4x − 1 menjadi − 2 sin 2 2x, sehingga
Soal No. 10
B. 2
C. −1
D. −2
E. −4
(un 2012 A13 dan D49)
Pembahasan
Jika 1 − cos 4x menjadi 2 sin 2 2x, tentunya cos 4x − 1 menjadi − 2 sin 2 2x, sehingga
Soal No. 10
Nilai |
A. −2
B. −1
C. 0
D. 1
E. 2
(un 2012 B76)
Pembahasan
Ubah 1 − cos 2x menjadi 2 sin 2 x
B. −1
C. 0
D. 1
E. 2
(un 2012 B76)
Pembahasan
Ubah 1 − cos 2x menjadi 2 sin 2 x
Soal No. 11
Nilai dari:
A. 2π
B. π
C. 0
D. 1/π
E. 1/2π
Pembahasan
Misakan:
x − 2 = y
Nilai dari:
A. 2π
B. π
C. 0
D. 1/π
E. 1/2π
Pembahasan
Misakan:
x − 2 = y
Soal No. 12
Nilai dari:
A. 0
B. 1/2
C. √2
D. 1/2 √2
E. 1
Pembahasan
Substitusi langsung akan menghasilkan bentuk 0/0, dengan strategi pemfaktoran,
Ingat bentuk:
Nilai dari:
A. 0
B. 1/2
C. √2
D. 1/2 √2
E. 1
Pembahasan
Substitusi langsung akan menghasilkan bentuk 0/0, dengan strategi pemfaktoran,
Ingat bentuk:
a2 − b2 = (a − b)(a + b)
dimana a = sin 2x dan b = cos 2x, setelah difaktorkan coret yang sama, kemudian substitusikan nilai x yang diminta:
dimana a = sin 2x dan b = cos 2x, setelah difaktorkan coret yang sama, kemudian substitusikan nilai x yang diminta:
Soal No. 13
Tentukan nilai dari
Pembahasan
Substitusi langsung menghasilkan bentuk 0/0.
Ubah cos 2x menjadi bentuk lain yaitu cos2x − sin2x kemudian faktorkan dengan mengingat bentuk
Tentukan nilai dari
Pembahasan
Substitusi langsung menghasilkan bentuk 0/0.
Ubah cos 2x menjadi bentuk lain yaitu cos2x − sin2x kemudian faktorkan dengan mengingat bentuk
a2 − b2 = (a − b)(a + b)
Setelah itu coret dengan bagian bawah, hingga diperoleh angka − 1.
Rumus untuk cos 2x (dalam soal ini dipakai rumus yang pertama)
Setelah itu coret dengan bagian bawah, hingga diperoleh angka − 1.
Rumus untuk cos 2x (dalam soal ini dipakai rumus yang pertama)
Sehingga:
Soal No. 14
Nilai dari
A. 6
B. 5
C. 4
D. 2
E. 0
(UN Matematika 2014 IPA)
Pembahasan
Faktorkan x2 − 1 dengan mengingat bentuk a2 − b2 = (a − b)(a + b). Kemudian uraikan sin2 (x − 1) menjadi sin (x − 1) sin (x − 1) dan tan (2x − 2) menjadi tan 2(x − 1). Coret seperlunya.
SOAL LAINNYA
Soal No. 2
Nilai dari limit
A. 0
B. 1/3
C. 2/3
D. 1
E. 3/2
Soal No. 3
Nilai dari limit
A. – 1
B. – 1/2
C. 0
D. 1/2
E. 2
Soal No. 4
Nilai dari limit
A. 1/9
B. 1/6
C. 2/9
D. 1/3
E. 2/3
Soal No. 5
Nilai dari limit
A. – 2
B. – 1
C. 0
D. 1/2
E. 2
Nilai dari
A. 6
B. 5
C. 4
D. 2
E. 0
(UN Matematika 2014 IPA)
Pembahasan
Faktorkan x2 − 1 dengan mengingat bentuk a2 − b2 = (a − b)(a + b). Kemudian uraikan sin2 (x − 1) menjadi sin (x − 1) sin (x − 1) dan tan (2x − 2) menjadi tan 2(x − 1). Coret seperlunya.
SOAL LAINNYA
Soal No. 1
Nilai dari limit
A. – 5
B. – 3
C. 0
D. 3
E. 5
Nilai dari limit
A. – 5
B. – 3
C. 0
D. 3
E. 5
Soal No. 2
Nilai dari limit
A. 0
B. 1/3
C. 2/3
D. 1
E. 3/2
Soal No. 3
Nilai dari limit
A. – 1
B. – 1/2
C. 0
D. 1/2
E. 2
Soal No. 4
Nilai dari limit
A. 1/9
B. 1/6
C. 2/9
D. 1/3
E. 2/3
Soal No. 5
Nilai dari limit
A. – 2
B. – 1
C. 0
D. 1/2
E. 2
Soal No. 6
Nilai dari limit
A. – 4
B. – 2
C. – 1
D. 2
E. 4
Soal No. 7
Nilai dari limit
A. 1/4
B. 1/2
C. 1
D. 2
E. 4
Soal No. 8
Nilai dari limit
A. – 4
B. – 3
C. 0
D. 4
E. ∞
Soal No. 9
Nilai dari limit
A. – 4
B. – 3
C. 0
D. 4
E. ∞
Soal No. 10
Nilai dari limit
A. – 2
B. – 1
C. – 1/2
D. – 1/4
E. 0
Nilai dari limit
A. – 4
B. – 2
C. – 1
D. 2
E. 4
Soal No. 7
Nilai dari limit
A. 1/4
B. 1/2
C. 1
D. 2
E. 4
Soal No. 8
Nilai dari limit
A. – 4
B. – 3
C. 0
D. 4
E. ∞
Soal No. 9
Nilai dari limit
A. – 4
B. – 3
C. 0
D. 4
E. ∞
Soal No. 10
Nilai dari limit
A. – 2
B. – 1
C. – 1/2
D. – 1/4
E. 0
https://matematikastudycenter.com/kelas-11-sma/123-limit-fungsi-trigonometri
Komentar
Posting Komentar