Turunan Fungsi
Tentukan turunan pertama dari fungsi berikut:
a) f(x) = 3x4 + 2x2 − 5x
b) f(x) = 2x3 + 7x
a) f(x) = 3x4 + 2x2 − 5x
b) f(x) = 2x3 + 7x
Pembahasan
Rumus turunan fungsi aljabar bentuk axn
Rumus turunan fungsi aljabar bentuk axn
Sehingga:
a) f(x) = 3x4 + 2x2 − 5x
f '(x) = 4⋅3x4− 1 + 2⋅2x2−1 − 5x1-1
f '(x) = 12x3 + 4x1 − 5x0
f '(x) = 12x3 + 4x − 5
b) f(x) = 2x3 + 7x
f '(x) = 6x2 + 7
Soal No. 2
Tentukan turunan pertama dari fungsi berikut:
a) f(x) = 10x
b) f(x) = 8
c) f(x) = 12
Pembahasan
a) f(x) = 10x
f(x) = 10x1
f '(x) = 10x1−1
f '(x) = 10x0
f '(x) = 10
b) f(x) = 8
f(x) = 8x0
f '(x) = 0⋅ 8x0−1
f '(x) = 0
c) f(x) = 12
f '(x) = 0
Soal No. 3
Tentukan turunan pertama dari fungsi berikut:
a) f(x) = 5(2x2 + 4x)
b) f(x) = (2x + 3)(5x + 4)
Pembahasan
Tentukan turunan pertama dari fungsi berikut:
a) f(x) = 5(2x2 + 4x)
f(x) = 10x2 + 20x
f ' (x) = 20x + 20
b) f(x) = (2x + 3)(5x + 4)
Urai terlebih dahulu hingga menjadi
f (x) = 10x2 + 8x + 15x + 12
f (x) = 10x2 + 13x + 12
Sehingga
f ' (x) = 20x + 13
Soal No. 4
Tentukan turunan dari fungsi-fungsi berikut
a) f(x) = 3x4 + 2x2 − 5x
f '(x) = 4⋅3x4− 1 + 2⋅2x2−1 − 5x1-1
f '(x) = 12x3 + 4x1 − 5x0
f '(x) = 12x3 + 4x − 5
b) f(x) = 2x3 + 7x
f '(x) = 6x2 + 7
Soal No. 2
Tentukan turunan pertama dari fungsi berikut:
a) f(x) = 10x
b) f(x) = 8
c) f(x) = 12
Pembahasan
a) f(x) = 10x
f(x) = 10x1
f '(x) = 10x1−1
f '(x) = 10x0
f '(x) = 10
b) f(x) = 8
f(x) = 8x0
f '(x) = 0⋅ 8x0−1
f '(x) = 0
c) f(x) = 12
f '(x) = 0
Soal No. 3
Tentukan turunan pertama dari fungsi berikut:
a) f(x) = 5(2x2 + 4x)
b) f(x) = (2x + 3)(5x + 4)
Pembahasan
Tentukan turunan pertama dari fungsi berikut:
a) f(x) = 5(2x2 + 4x)
f(x) = 10x2 + 20x
f ' (x) = 20x + 20
b) f(x) = (2x + 3)(5x + 4)
Urai terlebih dahulu hingga menjadi
f (x) = 10x2 + 8x + 15x + 12
f (x) = 10x2 + 13x + 12
Sehingga
f ' (x) = 20x + 13
Soal No. 4
Tentukan turunan dari fungsi-fungsi berikut
a) | |
b) | |
c) |
Pembahasan
a) | |
b) | |
c) |
Soal No. 5
Tentukan turunan dari fungsi-fungsi berikut, nyatakan hasil akhir dalam bentuk akar
a) | |
b) | |
c) |
Pembahasan
a) | |
b) | |
c) |
Soal No. 6
Dengan menggunakan rumus turunan hasil kali fungsi berikut ini
Tentukan turunan untuk f(x) = (x2 + 2x + 3)(4x + 5)
Pembahasan
Misal :
u = (x2 + 2x + 3)
v = (4x + 5)
maka
u ' = 2x + 2
v ' = 4
sehingga penerapan rumus di atas menjadi
Soal No. 7
Diketahui
Jika f '(x) menyatakan turunan pertama f(x), maka f(0) + 2f ' (0) =...
A. − 10
B. − 9
C. − 7
D. − 5
E. − 3
(Soal UN 2008)
Pembahasan
Untuk x = 0 maka nilai f(x) adalah
Berikutnya menentukan turunan f (x) yang berbentuk hasil bagi fungsi
Misal:
u = x2 + 3 -> u' = 2x
v = 2x + 1 -> v' = 2
Dengan menggunakan rumus turunan hasil kali fungsi berikut ini
Tentukan turunan untuk f(x) = (x2 + 2x + 3)(4x + 5)
Pembahasan
Misal :
u = (x2 + 2x + 3)
v = (4x + 5)
maka
u ' = 2x + 2
v ' = 4
sehingga penerapan rumus di atas menjadi
Soal No. 7
Diketahui
Jika f '(x) menyatakan turunan pertama f(x), maka f(0) + 2f ' (0) =...
A. − 10
B. − 9
C. − 7
D. − 5
E. − 3
(Soal UN 2008)
Pembahasan
Untuk x = 0 maka nilai f(x) adalah
Berikutnya menentukan turunan f (x) yang berbentuk hasil bagi fungsi
Misal:
u = x2 + 3 -> u' = 2x
v = 2x + 1 -> v' = 2
Sehingga
Untuk nilai x = 0 langsung bisa dimasukkan saja seperti ini
Sehingga f(0) + 2f' (0) = 3 + 2(−6) = − 9
Turunan Fungsi Trigonometri
Soal Nomor 1
Turunkan fungsi berikut:
y = 5 sin x
Pembahasan
Pembahasan
y = 5 sin x
y' = 5 cos x
Soal Nomor 2
Diberikan fungsi f(x) = 3 cos x
Tentukan nilai dari f ' ( π/2).
Pembahasan
y' = 5 cos x
Soal Nomor 2
Diberikan fungsi f(x) = 3 cos x
Tentukan nilai dari f ' ( π/2).
Pembahasan
Perhatikan rumus turunan untuk fungsi trigonometri berikut ini:
f(x) = 3 cos x
f '(x) = 3 (−sin x)
f '(x) = −3 sin x
Untuk x = π/2 diperoleh nilai f '(x)
f '(π/2) = −3 sin ( π/2) = −3 (1) = −3
Soal Nomor 3
Tentukan turunan pertama dari y = −4 sin x
Pembahasan
y = −4 sin x
y' = −4 cos x
Soal Nomor 4
Diberikan y = −2 cos x. Tentukan y'
Pembahasan
y = −2 cos x
y' = −2 (−sin x)
y' = 2 sin x
Soal Nomor 5
Tentukan y' dari y = 4 sin x + 5 cos x
Pembahasan
y = 4 sin x + 5 cos x
y' = 4 (cos x) + 5 (−sin x)
y ' = 4 cos x − 5 sin x
Soal Nomor 6
Tentukan turunan dari
y = 5 cos x − 3 sin x
Pembahasan
y = 5 cos x − 3 sin x
y' = 5 (−sin x) − 3 (cos x)
y' = −5 sin x − cos x
Soal Nomor 7
Tentukan turunan dari:
y = sin (2x + 5)
Pembahasan
Dengan aplikasi turunan berantai maka untuk
y = sin (2x + 5)
y ' = cos (2x + 5) ⋅ 2
↑
Angka 2 diperoleh dari menurunkan 2x + 5
y' = 2 cos (2x + 5)
Soal Nomor 8
Tentukan turunan dari y = cos (3x −1)
Pembahasan
Dengan aplikasi turunan berantai maka untuk
y = cos (3x − 1)
y ' = − sin (3x −1) ⋅ 3
↑
Angka 3 diperoleh dari menurunkan 3x − 1
Hasil akhirnya adalah
y' = − 3 sin (3x − 1)
Soal Nomor 9
Tentukan turunan dari:
y = sin2 (2x −1)
Pembahasan
Turunan berantai:
y = sin2 (2x −1)
y' = 2 sin 2−1 (2x −1) ⋅ cos (2x −1) ⋅ 2
y' = 2 sin (2x −1) ⋅ cos (2x −1) ⋅ 2
y' = 4 sin (2x −1) cos (2x −1)
Soal Nomor 10
Diketahui f(x) = sin3 (3 – 2x)
Turunan pertama fungsi f adalah f ' maka f '(x) =....
A. 6 sin2 (3 – 2x) cos (3 – 2x)
B. 3 sin2 (3 – 2x) cos (3 – 2x)
C. –2 sin2 (3 – 2x) cos (3 – 2x)
D. –6 sin (3 – 2x) cos (6 – 4x)
E. – 3 sin (3 – 2x) sin (6 – 4x)
(Soal Ebtanas 2000)
Pembahasan
f(x) = sin3 (3 – 2x)
Turunkan sin3 nya,
Turunkan sin (3 – 2x) nya,
Turunkan (3 – 2x) nya,
Hasilnya dikalikan semua seperti ini:
f(x) = sin3 (3 – 2x)
f ' (x) = 3 sin 2 (3 − 2x) ⋅ cos (3 − 2x) ⋅ − 2
f ' (x) = −6 sin 2 (3 − 2x) ⋅ cos (3 − 2x)
Sampai sini sudah selesai, namun di pilihan belum terlihat, diotak-atik lagi pakai bentuk sin 2θ = 2 sin θ cos θ
f ' (x) = −6 sin 2 (3 − 2x) ⋅ cos (3 − 2x)
f ' (x) = −3 ⋅ 2 sin (3 − 2x) ⋅ sin (3 – 2x) ⋅ cos (3 − 2x)
f ' (x) = −3 ⋅ 2 sin (3 − 2x) ⋅ cos (3 – 2x) ⋅ sin (3 − 2x)
|_____________________|
↓
sin 2 (3 − 2x)
f ' (x) = −3 sin 2(3 – 2x) ⋅ sin (3 − 2x)
f ' (x) = −3 sin (6 – 4x) sin (3 − 2x)
atau:
f ' (x) = −3 sin (3 − 2x) sin (6 – 4x)
Soal Nomor 11
Diketahui fungsi f(x) = sin2 (2x + 3) dan turunan dari f adalah f ′. Maka f ′(x) = …
A. 4 sin (2x + 3) cos (2x + 3)
B. 2 sin (2x + 3) cos (2x + 3)
C. sin (2x + 3) cos (2x + 3)
D. –2 sin (2x + 3) cos (2x + 3)
E. –4 sin (2x + 3) cos (2x + 3)
(Ebtanas 1998)
Pembahasan
Turunan berantai
f(x) = sin2 (2x + 3)
Turunkan sin2 nya,
Turunkan sin (2x + 3) nya,
Turunkan (2x + 3) nya.
f '(x) = 2 sin (2x + 3) ⋅ cos (2x + 3) ⋅ 2
f '(x) = 4 sin (2x + 3) ⋅ cos (2x + 3)
Turunan berantai
f(x) = sin2 (2x + 3)
Turunkan sin2 nya,
Turunkan sin (2x + 3) nya,
Turunkan (2x + 3) nya.
f '(x) = 2 sin (2x + 3) ⋅ cos (2x + 3) ⋅ 2
f '(x) = 4 sin (2x + 3) ⋅ cos (2x + 3)
Komentar
Posting Komentar